Twinning - WIDESPREAD-03-2018

Fraunhofer

GEOTHERMAL ENERGY 23.4.2020

D.SC(TECH.) J. BIRGITTA MARTINKAUPPI

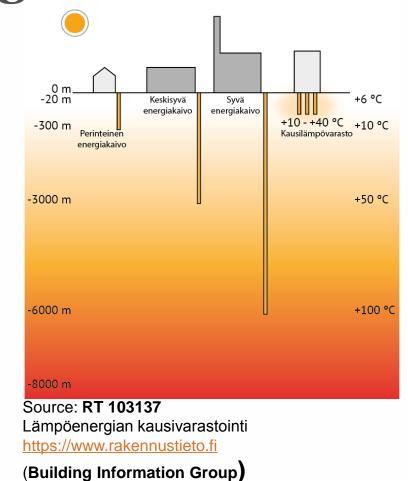
RENEWABLE ENERGY RESEARCH GROUP

o. CONTENT

- □ 1. Types of geoenergy
- **2**. Measurement instruments
- □ 3. Example of possible geothermal systems
 - Asphalt heat
 - Cold/cool storages
 - □ Concrete crush storage
 - □ Natural heat storage/source under water body Suvilahti case
 - Potential of old mines
 - Other
- □ 4. Geothermal system evaluation
 - Analysis methods
 - Sector coupling
 - Simulations
- **5**. Conclusion

2

1. Types of geoenergy



Types of geoenergy

- □ The types of geoenergy are:
 - Shallow
 - (Intermediate)
 - Deep
 - Seasonal heat/cool storage

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

Types of geoenergy

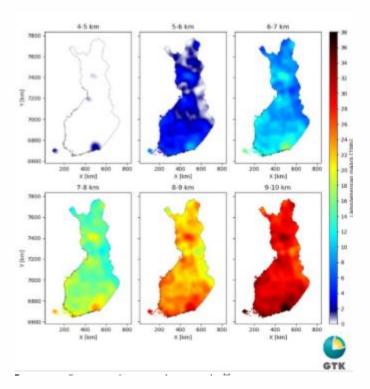
Different geothermal storage types

ATES - Aquifer Thermal Energy Storage

- BTES Borehole Thermal Energy Storage
- CTES Rock Cavern Thermal Energy Storage
- DTES Duct Thermal Energy Storage

Pit ES - Pit Energy Storage

PCMES - Phase Changing Material Energy Storage



Types of geoenergy

□ The selection of types depends on e.g.

Need

- Regional potential
 - Geological data
 - Geochemical data
 - Geophysical data
- Predicted production
- Water and heat recharges
- Economical issues

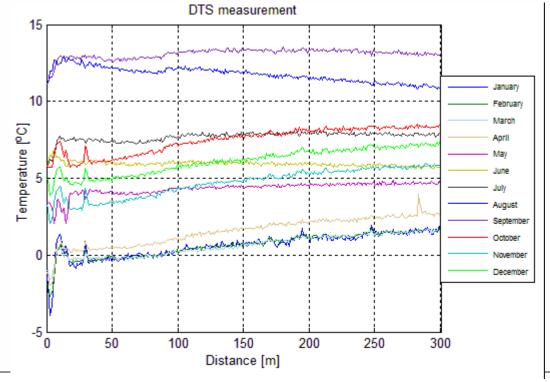
Source: GTK, Geological Survey of Finland,

UNIVERSITY OF VAASA

23.4.2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

- Distributed temperature sensing (DTS) method uses an optical fibre to function as linear sensor.
- Temperatures can be measured as a continuous profile along the whole fibre.
- DTS-measurement device emits short optical pulses (laser light), which illuminate the glass core of an optical fibre.
- One type of scattering is Raman scattering which consists of Anti-Stokes and Stokes band. Anti-Stokes band is temperature dependent, while Stokes band is not.
- The ratio of the Anti-Stokes and Stokes light intensities indicates the local temperature of optical fibre

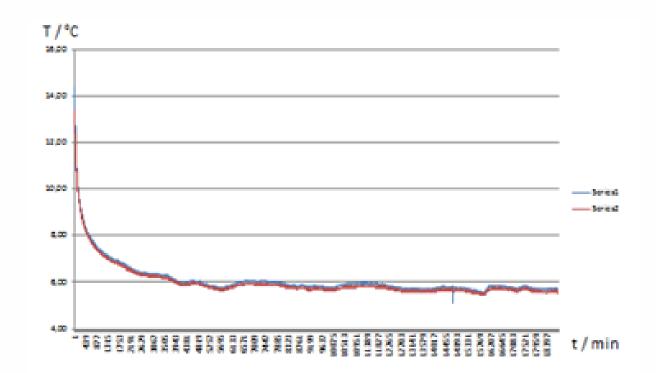


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

Example of measurements

Vaasan yliopisto

- The thermal response test trailer consists of equipment measure heat energy flow to (or from) thermal source and a data collector with transmitter.
- The collected data can be retrieved from the trailer to the central computer for analysis.
- Heating system consists of a hot water storage tank, three electrical resistances, four switches and an electric energy meter.
- The heating power can be selected with switches from 1 to 18 kW by 1 kW increments.
- During the TR-test heat exchange fluid has been pumped to the thermal source and time, flow and temperature difference between injection and extraction are measured


10

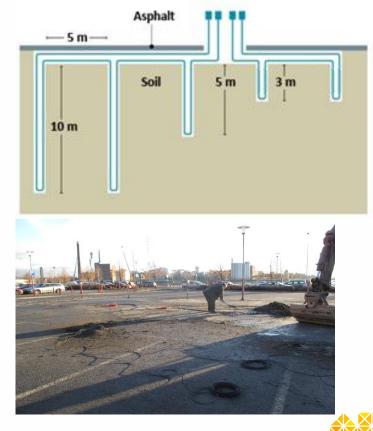
□ From TRT tests:

- basic temperature of bedrock
- thermal conductivity
- diffusion coefficient
- thermal resistance

Vaasan yliopisto

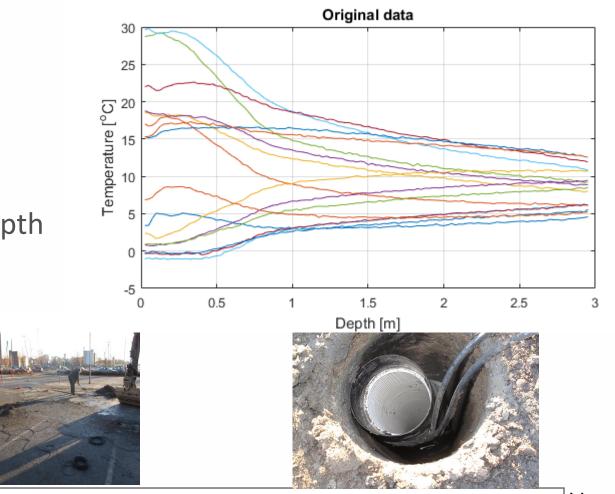
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

3. Example of possible geothermal systems



Asphalt heat

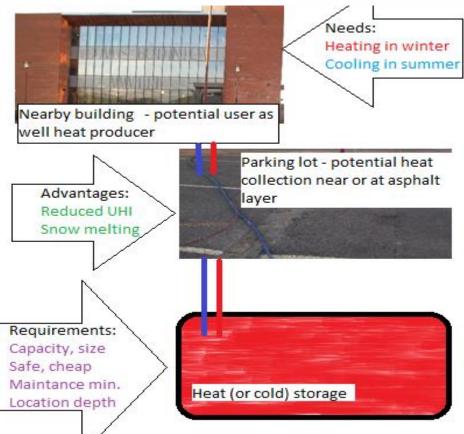
- Urban environment have often asphalted areas under which a structure with different material layers is constructed to provide stable ground.
- As asphalt has a high absorbance value, it has a good potential as a heat collector.
- It also provides a place for heat storages





Asphalt heat

- Original temperature measurement data.
- The depth value is an approximation as the exact depth cannot be determined.


23.4.2020

Asphalt heat

Mass for 1 m x 1 m x 1m volume unit

Name	Minimum value m ³	Maximum value m ³
Gravel	1201	1362
Sand (dry)	1281	1602
Sand (wet and wet packed)	1922	2082

Heat storage capacity (amount of heat) when temperature is increased by 10 °C

Name	Minimum value kJ	Maximum value kJ
Gravel	9 488	10 760
Sand (dry)	20 496	25 632
Sand (wet and wet	26 524	28 732
packed)		

Heat storage capacity (amount of heat) when temperature is increased by 20 °C

Name	Minimum value kJ	Maximum value kJ
Gravel	18 976	21 520
Sand (dry)	40 992	51 264
Sand (wet and wet	53 047	57 463
packed)		

15

Cold/cool storages

□ Cooling needs are increasing, e.g. due to:

Heat waves

Increasing temperatures

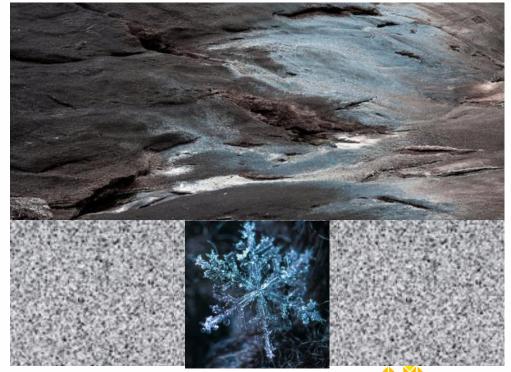
Users

- Residual buildings
- Public buildings
- Commercial buildings

23.4.2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº856670.

Vaasan yliopisto



Cold/cool storages

Cool or cold storage using bedrock or boreholes

Seasonal

- Renewable cold or cool
- □ Source of cold / cool
 - □ Natural conditions (e.g. winter in Finland)
 - Produced via excess renewable electricity
 - □ Goal is to reduce fossil fuel usage for cooling

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

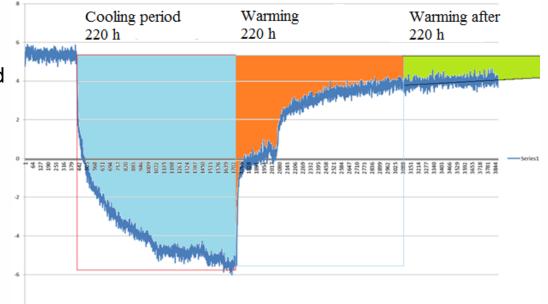
Cold/cool storages

Dry borehole

Located in Laajametsä industrial area in Vaasa, Finland

The City of Vaasa has drilled a 200 m deep well Results:

The blue part


Energy transferred to the borehole (2.07 MWh).

The orange part

Warming during the first 220 h period. The energy in this period is around 690 kWh or approximately 1/3 of the loaded.

The green part

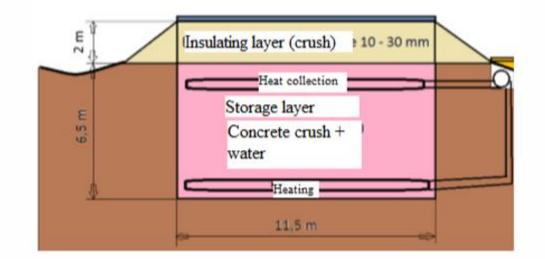
Some cool to be used later

Concrete crush storage

- Demolishing of concrete buildings and crushing the demolished parts produce a lot of concrete crush
 - Need to be recycled
- Some storages uses natural storages or new materials for constructing a storage
 - Natural storages might not be available
 - Material cost of storages should be low
 - Concrete has been used in storages
 - New materials uses natural resources
 - RECYCLED AND REUSED MATERIALS
 PREFERABLE

19

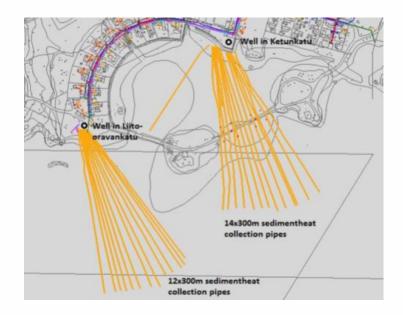
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.


Vaasan yliopisto

Concrete crush storage

□ Heat current – an important parameter

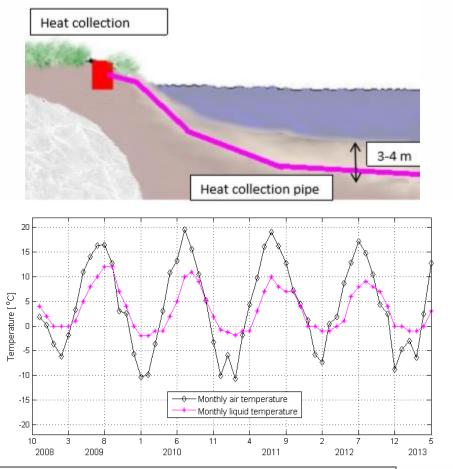
- It describes how material behaves as temperature changes in its environment
- It determines capability of a material to insulate or conduct heat



Natural heat storage/source under GeoUS water body – Suvilahti case

- A renewable energy source called sediment energy
 - based on heat collection with tubes like those used in ground energy
 - installed inside a sediment layer under water body.

Source: Vaasan Eko-lämpö Oy


21

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº856670. Vaasan yliopisto

Natural heat storage/source under GeoUS water body – Suvilahti case

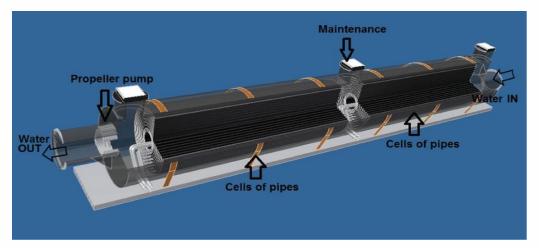
- Renewable every year
 - □ It is stable
- □ It can be used for cooling
- This might be expentendable to certain t of sediment on the land

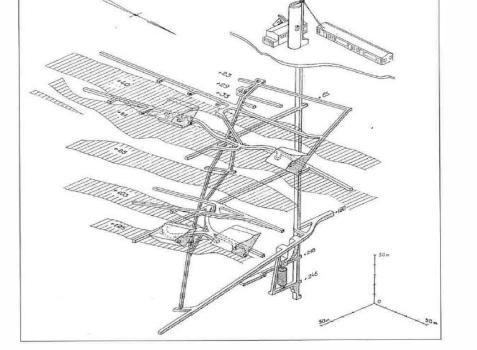
Vaasan yliopisto

Potential of old mines

- A lot of mines has been abandoned after the use
- Their geothermal potential is still available heating and cooling
- Case example: Korsnäs lead mine

Operating period: 1958–1972

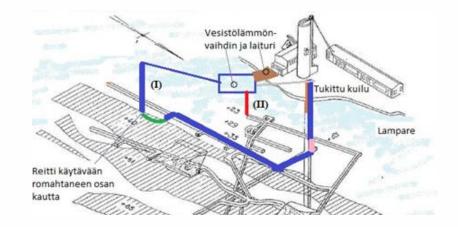




Potential of old mines

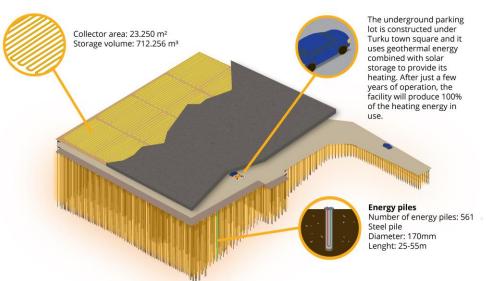
Possible to extract e.g. with water heat exchanger

• Image from book Sven Nystén m fl: Korsnäs gruvhistoria (2008, Vaasa)


 Mega Heat Exchanger eli WHCEP - Water Heat and Cooling Energy Plant (Mr. Mauri Lieskoski, Geopipe)

Potential of old mines

- Energy needed for heating: 310 MWh annually or 0.85 MWh daily (1.1 TJ)
- Different utilization schemes were created:
- Routes inside the main (I. 10 GJ / 2.8 MWh, II. 4,2 GJ /1.2 MWh, all galleries 0.1 TJ / 27.8 MWh).



Other -Underground parking lot at GeoUS Turku market square

- PhD student Rauli Lautkankare / Turku University of Applied Sciences
- Parking lot constructed in clay
- Seasonal storage of solar energy

Rauli Lautkankare, Nikolas Salomaa, Birgitta Martinkauppi and Anna Slobodenyuk, Underground parking lot at Turku market square - Zero energy parking hall and the

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°856670.

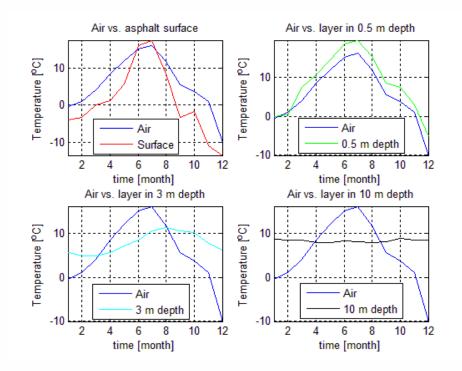
Vaasan yliopisto UNIVERSITY OF VAASA

Other – deep boreholes

□ When higher temperatures are need, then deep boreholes can used

- Not many available yet
- Earthquakes
- □ It can be combined with heat storages
- □ More expensive

4. Geothermal system evaluation



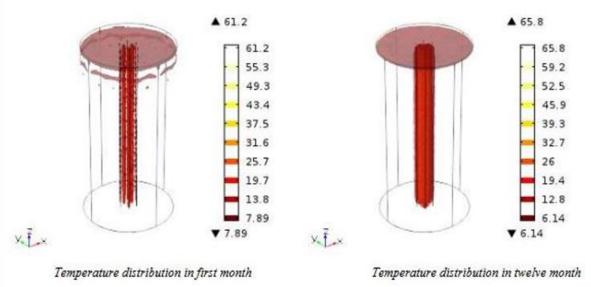
Analysis methods

Machine learning and statistical methods are suitable

- Potential targets
 - Behaviour of the system
 - Economical potential
 - Prediction of production
 - Sizing
 - **System optimization**
 - **Thermal parameters**
 - and so on

Sector coupling

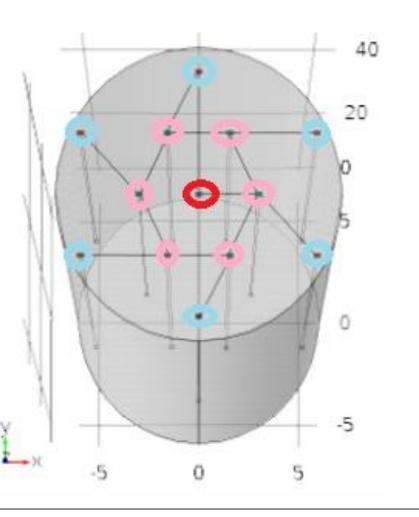
- Combining electric grid and geothermal energy
- Heat exchanger / heat pump can be understand as an interface between these two
- Methods need to be developed
- Main goals: to reduce costs and green house gases



Simulations

- A borehole heat exchanger can be analyzed using Line source method and 3D modeling with Comsol.
 - to store industrial waste heat energy and later use borehole heat exchangers to provide heat for a building.
 - The planned ground heat storage consists a total of nine boreholes.

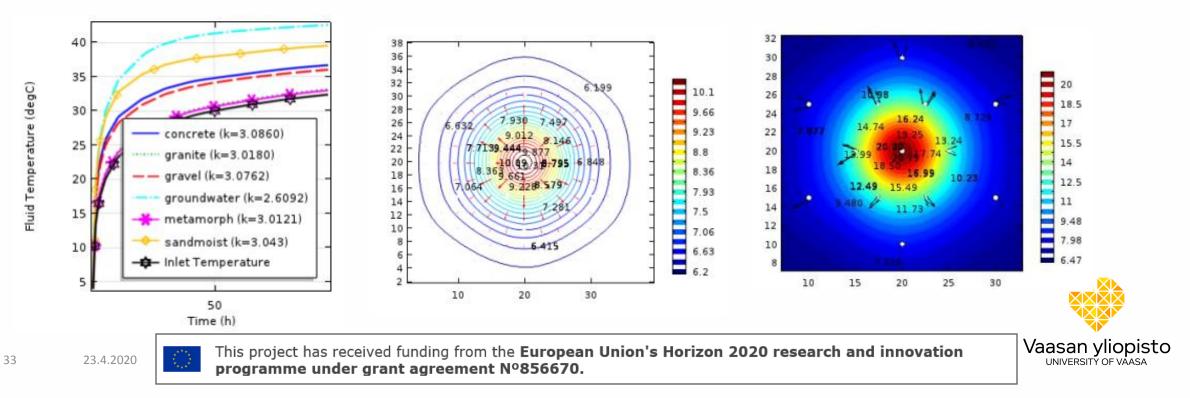
Vaasan yliopisto



Simulations

Borehole system in Kokkola

- □ 13 boreholes
- Centre borehole: heat injection, 50 m deep
- □ The first ring: 6 boreholes, 40 m deep
- □ The second ring: 6 boreholes, 40 m deep


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº856670. Vaasan yliopisto

Simulations

The grouting material has a clear effect on the performance

5. Conclusions

Conclusions

Geothermal energy has a huge potential and is currently a hot topic

- An important part can be a seasonal heat/cool storage
- Sector coupling
- A wide variety of possible implementations is possible
- Different analysis and simulations need to be done
- Economical issues are important factors

THANK YOU!

BIRGITTA.MARTINKAUPPI@UNIVAASA.FI

